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Abstract. We present a new analysis of the ∆I = 1/2 rule in K → ππ decays and the B̂K parameter.
We use the 1/Nc expansion in the effective chiral lagrangian for the pseudoscalar mesons and compute
the hadronic matrix elements at leading and next-to-leading order in the chiral and the 1/Nc expansions.
Numerically, our calculation reproduces the dominant ∆I = 1/2 K → ππ amplitude. Our result depends
only moderately on the choice of the cutoff scale in the chiral loops. The ∆I = 3/2 amplitude emerges
sufficiently suppressed but shows a significant dependence on the cutoff. The B̂K parameter turns out to
be smaller than the value previously obtained in the 1/Nc approach. It also shows a significant dependence
on the choice of the cutoff scale. Our results indicate that corrections from higher order terms and/or
higher resonances are large for the ∆I = 3/2 K → ππ amplitude and the (|∆S| = 2) K0–K̄0 transition
amplitude.

1 Introduction

Over the last few decades the kaon system has provided
us with a rich field of phenomenology which has been im-
portant for developing our theoretical understanding of
the interplay of weak and strong interactions. The non-
leptonic kaon decays are especially interesting because
they provide a testing ground for QCD dynamics at long
distances. Two outstanding problems in the field are the
explanation of the ∆I = 1/2 rule in K → ππ decays
and the calculation of the B̂K parameter which measures
the non-perturbative contributions to the (|∆S| = 2) K0–
K̄0 transition amplitude. An accurate knowledge of B̂K is
necessary for theoretically investigating the indirect CP
violation in the neutral kaon mass matrix, as well as the
KL–KS mass difference. The ∆I = 1/2 rule is particularly
important because it gives rise to the small value of the
ratio ε′/ε which measures the direct CP violation in the
K → ππ decay amplitudes.

Since its first observation more than 40 years ago [1]
the ∆I = 1/2 enhancement has attracted a great deal of
theoretical interest in the attempts to find the dynamical
mechanism behind the approximate isospin selection rule,
in particular within the standard model. Experimentally,
the ratio of the ∆I = 1/2 and ∆I = 3/2 amplitudes in
K → ππ decays corresponding to I = 0 and I = 2 in the
final state, respectively, was measured to be

1
ω

≡ Rea0

Rea2
≡ Re(K → (ππ)I=0)

Re(K → (ππ)I=2)
= 22.2 ± 0.1, (1)

with AI = aI exp(iδI) and δI the final state interaction
phases. This result was particularly enigmatic before the
advent of QCD when only the current–current operator Q2
arising from the W exchange was included in the analysis
and, consequently, Rea0/Rea2 was expected to be around
one. With the establishment of QCD our understanding of
the ∆I = 1/2 selection rule improved considerably. Using
the operator product expansion, the K → ππ amplitudes
are obtained from the effective low-energy hamiltonian for
|∆S| = 1 transitions [2–4],

H∆S=1
eff =

GF√
2

ξu

8∑
i=1

ci(µ)Qi(µ) (µ < mc), (2)

ci(µ) = zi(µ) + τyi(µ), τ = −ξt/ξu, ξq = V ∗
qsVqd. (3)

The arbitrary renormalization scale µ separates short- and
long-distance contributions to the decay amplitudes. The
Wilson coefficient functions ci(µ) contain all the informa-
tion on heavy-mass scales. For CP conserving processes
only the zi are numerically relevant. The coefficient func-
tions can be calculated for a scale µ & 1 GeV using pertur-
bative renormalization group techniques. They were com-
puted in an extensive next-to-leading logarithm analysis
by two groups [5,6]. The local four-quark operators Qi(µ)
can be written, after Fierz reordering, in terms of color
singlet quark bilinears:

Q1 = 4s̄LγµdLūLγµuL, Q2 = 4s̄LγµuLūLγµdL, (4)

Q3 = 4
∑

q

s̄LγµdLq̄LγµqL,
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Q4 = 4
∑

q

s̄LγµqLq̄LγµdL, (5)

Q5 = 4
∑

q

s̄LγµdLq̄RγµqR, Q6 = −8
∑

q

s̄LqRq̄RdL, (6)

Q7 = 4
∑

q

3
2
eq s̄LγµdLq̄RγµqR,

Q8 = −8
∑

q

3
2
eq s̄LqRq̄RdL, (7)

where the sum goes over the light flavors (q = u, d, s) and

qR,L =
1
2
(1 ± γ5)q, eq = (2/3,−1/3,−1/3). (8)

Q3, . . . , Q6 arise from QCD penguin diagrams involving a
virtual W and a c or t quark, with gluons connecting the
virtual heavy quark to the light quarks. They transform as
(8L, 1R) under SU(3)L × SU(3)R and solely contribute to
∆I = 1/2 transitions. Q7 and Q8 are electroweak penguin
operators [7,8] which are less important for the ∆I = 1/2
rule. Long-distance contributions to the amplitudes AI

are contained in the hadronic matrix elements of the four-
quark operators,

〈Qi(µ)〉I ≡ 〈ππ, I|Qi(µ)|K0〉, (9)

which are related to the π+π− and π0π0 final states
through the isospin decomposition

〈Qi〉0 =
1√
6

(
2〈π+π−|Qi|K0〉 + 〈π0π0|Qi|K0〉) , (10)

〈Qi〉2 =
1√
3

(〈π+π−|Qi|K0〉 − 〈π0π0|Qi|K0〉)

=

√
2
3
〈π+π0|Qi|K+〉. (11)

They are difficult to calculate but can be estimated using
non-perturbative techniques generally for µ around a scale
of 1 GeV.

Major progress in the understanding of the ∆I = 1/2
rule was made when it was observed that the short-dis-
tance (quark) evolution, which is represented by the Wil-
son coefficient functions in the effective hamiltonian of (2),
leads to both an enhancement of the I = 0 and a suppres-
sion of the I = 2 final state. The octet enhancement [2]
in the (Q1, Q2) sector is dominated by the increase of z2
when µ evolves from MW down to µ ' 1 GeV, whereas
the suppression of the ∆I = 3/2 transition results from
a partial cancellation between the contributions from the
Q1 and Q2 operators owing to a destructive Pauli inter-
ference in the K+ → π+π0 amplitude. Another impor-
tant short-distance enhancement was found to arise in the
sector of the QCD penguin operators, in particular for
z6, through the proper inclusion of the threshold effects
(and the associated incomplete GIM cancellation above
the charm quark mass) [9]. Nevertheless, it was concluded
that the perturbative QCD effects are far from sufficient

to describe the ∆I = 1/2 rule and QCD dynamics at low
energies must be addressed. The long-distance enhance-
ment of the matrix elements of the QCD penguin oper-
ators over the matrix elements of Q1 and Q2 was first
conjectured and estimated in [3] in the vacuum saturation
approximation (VSA) [10]. The VSA approach, however,
fails completely in explaining the ∆I = 1/2 rule, and a
more refined method for the calculation of the hadronic
matrix elements is certainly needed.

Due to the non-perturbative nature of the long-dis-
tance contribution, a large variety of techniques has been
proposed to estimate it (for some recent publications see
[11–16]). Among the analytical methods, the 1/Nc expan-
sion [17] (Nc being the number of colors) associated with
the effective chiral lagrangian is particularly interesting.
In this approach, QCD dynamics at low energies is repre-
sented by the ‘meson evolution’ of the operators, from zero
momentum to µ, in terms of the chiral loop corrections to
the matrix elements [9,18]. The authors of [18] calculated
the loop corrections to the matrix elements of Q1 and
Q2 and included the gluon penguin operator Q6 at the
tree level, consistent with the 1/Nc expansion. They ob-
tained an additional enhancement and suppression of the
∆I = 1/2 and ∆I = 3/2 amplitudes, respectively, system-
atically continuing the octet enhancement in the (Q1, Q2)
sector to the long-distance domain. Numerically, a2 was
reproduced with an accuracy of 70 to approximately 100%,
whereas a0 [for ΛQCD = 300 MeV and ms(1 GeV) = 125–
175 MeV] was found to be around 65–80% of the measured
value, suggesting that the bulk of the physics behind the
∆I = 1/2 rule in kaon decays is now understood. One
might note that the agreement with experiment is not im-
proved by including the next-to-leading order values for
the zi [19].

In this article we present a new calculation of the
hadronic matrix elements in K → ππ decays in the 1/Nc
expansion for pseudoscalar mesons. The paper contains
several improvements over the original approach of [18]
which are conceptually and numerically important. One
improvement concerns the matching of short- and long-
distance contributions to the amplitudes, by adopting a
modified identification of virtual momenta in the integrals
of the chiral loops. To be explicit, we consider the two cur-
rents or densities in the chiral representation of the oper-
ators to be connected to each other through the exchange
of an effective color singlet boson, and identify its momen-
tum with the loop integration variable. The effect of this
procedure is to modify the loop integrals, which introduces
noticeable effects in the final results. More important, it
provides an unambiguous matching of the 1/Nc expan-
sion in terms of mesons to the QCD expansion in terms of
quarks and gluons. The approach followed here leads to an
explicit classification of the diagrams into factorizable and
non-factorizable ones. Factorizable loop diagrams refer to
the strong sector of the theory and give corrections whose
scale dependence is absorbed in the renormalization of
the chiral effective lagrangian. The non-factorizable loop
diagrams have to be matched to the Wilson coefficients
and should cancel scale dependences which arise from the
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Π =




π0 + 1√
3
aη +

√
2
3 bη′ √

2π+ √
2K+

√
2π− −π0 + 1√

3
aη +

√
2
3 bη′ √

2K0

√
2K− √

2K̄0 − 2√
3
bη +

√
2
3aη′


 , (14)

short-distance expansion. In a recent publication together
with Bardeen and Paschos [20] we used this method to cal-
culate the hadronic matrix elements of Q6 and Q8 which
dominate the ratio ε′/ε. In this paper we focus on the
CP conserving amplitudes which, to a large extent, are
governed by the current–current operators Q1 and Q2.

In [18] a mass scale replacing the complete dependence
of the exact expressions on the meson masses was intro-
duced in the chiral logarithms. Another improvement of
this paper is that we investigate the exact expressions for
the matrix elements using the matching prescription dis-
cussed above, i.e., we evaluate the complete finite terms
from the non-factorizable diagrams. Moreover, we calcu-
late the whole of the matrix elements, that is to say, we
also take into account the subleading penguin operators.
For consistency with [20] we also include the small effects
of the singlet η0. In the numerical analysis we take special
care to separate the different contributions. In particular,
we discuss the effect of the final state interaction phases
which were not taken into account in [18]. Uncertainties
arising from the short-distance part of the calculation are
estimated by comparing the amplitudes obtained from the
LO and the NLO Wilson coefficients, respectively. Finally,
we also investigate the size of higher order corrections to
the hadronic matrix elements to critically examine the
stability of our results within the pseudoscalar approxi-
mation.

In the second part of this work we investigate the ma-
trix element of the (|∆S| = 2) K0–K̄0 amplitude in the
1/Nc expansion following the same lines of thought. The
introduction to this calculation we postpone to the be-
ginning of Sect. 5. Our results for the K → ππ matrix
elements were already discussed in part in [21,22]. For a
more detailed presentation of the general method we refer
the reader to [20,23].

The paper is organized as follows. In Sect. 2 we review
the general framework of the effective low-energy calcula-
tion and discuss the matching of short- and long-distance
contributions to the decay amplitudes. Then, in Sect. 3
we investigate the K → ππ matrix elements. We show ex-
plicitly that the scale dependence of the factorizable loop
diagrams is absorbed in the renormalization of the bare
couplings, the meson wave functions and masses. We next
calculate the non-factorizable loop corrections in the cut-
off regularization scheme. In Sect. 4 we match them to the
Wilson coefficients to obtain the isospin amplitudes. In
Sect. 5 we extend the analysis to the (|∆S| = 2) K0–K̄0

transition. We compute the matrix element and match it
to the short-distance coefficient function to determine the
B̂K parameter. In both sections we present our numeri-
cal results and compare them with those of the existing
analyses. The conclusions can be found in Sect. 6.

2 General framework

Following the lines of [20] we calculate the hadronic matrix
elements of the local four-quark operators (with |∆S| = 1,
2) in the 1/Nc expansion. To this end we start from the
chiral effective lagrangian for pseudoscalar mesons which
involves an expansion in momenta where terms up to
O(p4) are included [24]. Keeping only terms of O(p4)
which contribute to the K → ππ or the K0–K̄0 matrix
elements and which are leading in Nc it reads:1

Leff =
f2

4

(
〈DµU†DµU〉 +

α

4Nc
〈lnU† − lnU〉2

+r〈MU† + UM†〉
)

+rL5〈DµU†DµU(M†U + U†M)〉
+r2L8〈M†UM†U + MU†MU†〉, (12)

with DµU = ∂µU − irµU + iUlµ, 〈A〉 denoting the trace
of A and M = diag(mu, md, ms). lµ and rµ are left- and
right-handed gauge fields, respectively, f and r are free
parameters related to the pion decay constant Fπ and to
the quark condensate, with r = −2〈q̄q〉/f2. The complex
matrix U is a non-linear representation of the pseudoscalar
meson nonet:

U = exp
i
f

Π, Π = πaλa, 〈λaλb〉 = 2δab, (13)

where, in terms of the physical states (see (14) on top of
the page) with

a = cos θ −
√

2 sin θ,
√

2b = sin θ +
√

2 cos θ, (15)

The various conventions and definitions we use are in
agreement with [20]. In particular, we introduce the sin-
glet η0 in the same way and with the same value for the
UA(1) symmetry breaking parameter, α = m2

η + m2
η′ −

2m2
K ' 0.72 GeV2, corresponding to the η–η′ mixing an-

gle θ = −19◦ [25]. The bosonic representation of the quark
currents is defined in terms of (functional) derivatives of
the chiral action:

q̄iLγµqjL

≡ δS

δ(lµ(x))ij
= −i

f2

2
(
U†∂µU

)
ji

+ irL5
(
∂µU†M

−M†∂µU + ∂µU†UM†U − U†MU†∂µU
)
ji

, (16)

and the right-handed currents are obtained by parity
transformation. Equation (16) allows us to express the

1 One might note that the mass term ∝ L8 contributes only
to the matrix elements of Q6 and Q8 which were computed in
[20]. Here we include it for completeness
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current–current operators in terms of the pseudoscalar
meson fields.

The 1/Nc corrections to the matrix elements 〈Qi〉I are
calculated by chiral loop diagrams in line with [20]. The
factorizable contributions, on the one hand, refer to the
strong sector of the theory and give corrections whose
scale dependence is absorbed in the renormalization of
the chiral effective lagrangian. This property is obvious
in the case of the (conserved) currents and was demon-
strated explicitly in the case of the bosonized densities [20,
23]. Consequently, the factorizable loop corrections can
be computed within dimensional regularization. The non-
factorizable corrections, on the other hand, are UV di-
vergent and must be matched to the short-distance part.
They are regularized by a finite cutoff which is identi-
fied with the short-distance renormalization scale [18,19,
26,27]. The definition of the momenta in the loop dia-
grams which are not momentum translation invariant was
discussed in detail in [20]. A consistent matching is ob-
tained by considering the two currents or densities to be
connected to each other through the exchange of a color
singlet boson and by assigning the same momentum to it
at long and short distances [28–31]. The identification of
this momentum with the loop integration variable leads to
modified integrals in the chiral loop diagrams compared to
those of [18,26]. The numerical implications for the isospin
amplitudes in K → ππ decays and the B̂K parameter will
be addressed in Sects. 4 and 5.

In this paper we investigate the hadronic matrix ele-
ments at leading and next-to-leading order in the chiral
and the 1/Nc expansions. In particular, we calculate the
O(p2/Nc) corrections to the current–current operators –
that is to say, the one-loop corrections over the O(p2)
lagrangian. The matrix elements of the density–density
operators Q6 and Q8 are taken from [20]. In the numer-
ical analysis of the ∆I = 1/2 rule and the B̂K parame-
ter we use the leading logarithmic (LO), as well as, the
next-to-leading logarithmic (NLO) values [5,6,32,33] for
the (|∆S| = 1, 2) short-distance coefficient functions.2 In
general, the lack of any reference to the renormalization
scheme dependence in the effective low-energy calculation
prevents a complete matching at the next-to-leading or-
der [34]. Nevertheless, a comparison of the amplitudes ob-
tained from the LO and NLO coefficients is meaningful as
regards testing the validity of perturbation theory.

In the following sections we calculate the long-distance
1/Nc corrections to the K → ππ amplitudes and the B̂K

parameter. First, we investigate the factorizable correc-
tions and show their absorption in the low-energy con-
stants. Secondly, we determine the non-factorizable loops
within the modified momentum prescription. Finally, we
perform a numerical analysis and compare our results with
those of the existing studies.

2 We treat the coefficient functions as leading order in 1/Nc

since the large logarithms arising from the long renormalization
group evolution from (mt, MW ) to µ ' O(1GeV) compensate
for the 1/Nc suppression

+ (ij) (kl)

(ij)(kl)(ij)(kl) (ij)(kl)

(ij)(kl) (ij)(kl)

(ij)(kl)

Fig. 1. Factorizable diagrams for the matrix elements of the
current–current operators in the isospin limit. Crossed circles
represent the bosonized currents, black circles the strong ver-
tices. The lines denote the pseudoscalar mesons. The external
legs represent all possible permutations of the kaon and the
pions

3 K → ππ decays

In this section we present the hadronic matrix elements
of the current–current operators for the physical decay
modes K0 → π+π− and K0 → π0π0 up to O(p4) and
O(p2/Nc) in the parameter expansion. From these results
we derive the isospin amplitudes K → (ππ)I=0,2, heading
for an explanation of the ∆I = 1/2 selection rule in kaon
decays.

3.1 Factorizable 1/Nc corrections

The (bare) tree level of the K → ππ matrix elements, up
to O(p4) in the chiral expansion, as well as the factorizable
1/Nc corrections to the O(p2) can be calculated from the
tree and loop topologies depicted in Fig. 1. From the sum
of these diagrams we obtain3

〈π+π−|Q2|K0〉F
(0)

=
√

2f
(
m2

K − m2
π

) [
1 +

4L5

f2

(
m2

K + 4m2
π

)
− 1

16π2f2

(
3λ2

c − 5
4

(
m2

K + 2m2
π

)
log λ2

c

)
+ · · ·

]
, (17)

where

〈π+π−|Q2|K0〉F

= 〈π+π−|Q4|K0〉F = −〈π0π0|Q1|K0〉F

= 〈π0π0|Q4|K0〉F =
2
3
〈π0π0|Q7|K0〉F , (18)

and

〈π+π−|Qi|K0〉F = 0 for i ∈ {1, 3, 5, 7} (19)

〈π0π0|Qi|K0〉F = 0 for i ∈ {2, 3, 5}. (20)

The ellipses in (17) denote finite terms we omit here for
the analysis of the ultraviolet behavior (in particular, they
provide the reference scale for the logarithms). We specify

3 In distinction to [20] the factor i referring to the weak ver-
tex is included in the definition of the matrix element
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our results in the cutoff regularization scheme to demon-
strate the absorption of the quadratic, as well as the log-
arithmic divergences as required by current conservation.
We note that all factorizable terms quadratic and loga-
rithmic in the cutoff are independent of the momentum
prescription in the loop. λc is the cutoff for the factor-
izable diagrams. We introduce two different scales since
the factorizable and the non-factorizable corrections refer
to disconnected sectors of the theory (strong and weak
sectors). Having demonstrated the absence of UV diver-
gent terms in the sum of the factorizable diagrams, in the
numerical analysis of the full expressions we will use di-
mensional regularization, as in pure chiral perturbation
theory, which is momentum translation invariant.

If we renormalize the wave functions of the kaon and
the pions (πr ≡ Z

1/2
π π0), as well as, the bare decay con-

stant f by using (14)–(17) and (25) of [20], we arrive
at the renormalized (factorizable) matrix elements of the
(|∆S| = 1) current–current operators:4

〈π+π−|Q2|K0〉F
(r) =

√
2Fπ

(
m2

K − m2
π

) [
1 +

4L̂r
5

F 2
π

m2
π

]
,

(21)
where the constant L̂r

5 is defined through the relation [20]

FK

Fπ
≡ 1 +

4L̂r
5

F 2
π

(m2
K − m2

π), (22)

and the remaining matrix elements can be obtained from
(18)–(20).

We notice that for the four-quark operators Qi of the
current–current type the divergent terms are absorbed by
the renormalization procedure. In addition, the factoriz-
able 1/Nc corrections vanish completely, that is to say, the
divergent as well as the finite terms. This property has
been observed numerically, within dimensional regulariza-
tion, because the complexity of all factorizable contribu-
tions prevents us from doing a fully analytic calculation.
Since the factorizable scale λc disappears through renor-
malization, the only matching between long- and short-
distance contributions is obtained by identifying the cutoff
scale Λc of the non-factorizable diagrams with the QCD
renormalization scale.

Finally, we note that in the next-to-leading order term
of (21) and (22) we used 1/Fπ rather than 1/f as was
done in [18]. Formally, the difference represents higher
order effects. Nevertheless, the appearance of 1/f gives
rise to a residual dependence on the factorizable scale λc,
which has no counterpart at the short-distance level and
will be absorbed by factorizable loop corrections to the
matrix elements at the next order in the parameter ex-
pansion. Consequently, it is a more adequate choice to
use the physical decay constant in the expressions under
consideration. Instead of Fπ the kaon decay constant FK

could be used as well. Both choices will be considered in
the numerical analysis, which gives a rough estimate of
higher order corrections.

4 The full expressions for the wave function and the decay
constants are given in terms of integrals in Appendix A of [20]

+ (ij) (kl)

(ij)(kl)

(ij)(kl)

(ij)(kl)(ij)(kl)

Fig. 2. Non-factorizable diagrams for the matrix elements of
the current–current operators in the isospin limit

3.2 Non-factorizable 1/Nc corrections

The non-factorizable 1/Nc corrections to the hadronic ma-
trix elements constitute the part to be matched to the
short-distance Wilson coefficient functions; i.e., the corre-
sponding scale Λc has to be identified with the renormal-
ization scale µ of QCD. We perform this identification, as
we argued in Sect. 2, by associating the cutoff to the effec-
tive color singlet boson. Then, at the O(p2) in the chiral
expansion, from the diagrams of Fig. 2 we obtain in the
SU(2) limit

〈π+π−|Q1|K0〉NF = −
√

2
(
m2

K − m2
π

)
16π2Fπ

×
[
3Λ2

c −
(

1
4
m2

K + 3m2
π

)
log Λ2

c + · · ·
]

(23)

〈π+π−|Q2|K0〉NF =

√
2

(
m2

K − m2
π

)
16π2Fπ

×
[
3
2
Λ2

c +
(

m2
K − 3

2
m2

π

)
log Λ2

c + · · ·
]

(24)

〈π+π−|Q3|K0〉NF

=

√
2

(
m2

K − m2
π

)
16π2Fπ

2m2
π log Λ2

c + · · · (25)

〈π+π−|Q4|K0〉NF =

√
2

(
m2

K − m2
π

)
16π2Fπ

×
[
9
2
Λ2

c +
(

3
4
m2

K − 5
2
m2

π

)
log Λ2

c + · · ·
]

(26)

〈π+π−|Q7|K0〉NF

=

√
2

(
m2

K + 2m2
π

)
16π2Fπ

[
9
4
Λ2

c − 1
8

(
3m2

K + 7m2
π

+
6m4

π

m2
K + 2m2

π

)
log Λ2

c + · · ·
]

(27)

〈π0π0|Q2|K0〉NF =

√
2

(
m2

K − m2
π

)
16π2Fπ

×
[
9
2
Λ2

c +
3
4

(
m2

K − 6m2
π

)
log Λ2

c + · · ·
]

(28)

〈π0π0|Q4|K0〉NF =

√
2

(
m2

K − m2
π

)
16π2Fπ

×
[
9
2
Λ2

c +
1
4

(
3m2

K − 10m2
π

)
log Λ2

c + · · ·
]

, (29)
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where

〈π+π−|Q3|K0〉NF

= 〈π0π0|Q3|K0〉NF = −〈π0π0|Q5|K0〉NF

=
1
2
〈π0π0|Q7|K0〉NF = −〈π+π−|Q5|K0〉NF (30)

and
〈π0π0|Q1|K0〉NF = 0. (31)

One might note that in (23)–(29) [as in (17)] we replaced
m2

η, m2
η′ , and the mixing angle θ by m2

π and m2
K using the

octet–singlet mass matrix of [25].
At this stage of the calculation we find quadratic as

well as logarithmic divergences of the non-factorizable cor-
rections. We note that already the leading (∼ Λ2

c) terms
depend on the momentum prescription. The quadratic
terms were calculated in [30] by the background field
method. In this paper we investigate the full expressions
for the matrix elements needed for the numerical analysis
of the amplitudes. The results contain finite terms, origi-
nating from the solutions of the integrals listed in (48) and
in Appendix B of [20], which we neglect here for brevity
and denote by the ellipses. We also note that in the case
of Q7 the solution of the integrals brings about a quar-
tic dependence on the cutoff which has to be cancelled
by adding a specific contact interaction proportional to
δ(4)(0) to the Feynman rules of the truncated meson the-
ory [30,35].

Even though the scale dependence of the perturba-
tive coefficient functions is only logarithmic, the full long-
distance contribution including the quadratic terms has
to be matched to the short-distance part. The quadratic
dependence on the cutoff is physical and is necessary for
several reasons. First, in the chiral limit (mq = 0) all cor-
rections vanish except for the Λ2

c terms, which produce the
only scale to be matched to the short distance. Secondly,
they stabilize the 1/Nc expansion and generally improve
the matching of the meson and the quark pictures [18].
Finally, they provide us with a rough estimate of the con-
tributions from higher resonances.

We note that in (23)–(29) we used the physical decay
constant Fπ rather than f in the same way as for the fac-
torizable diagrams. Again the difference represents higher
order effects. However, the (factorizable) scale dependence
of f has no counterpart in the short distance and will be
absorbed at the next order in the chiral expansion. As for
the factorizable contributions the choice of FK instead of
Fπ would be also appropriate.

4 Numerical analysis

In this paragraph we list the numerical values for the
hadronic matrix elements. We next match them to the
Wilson coefficients and study the K → (ππ)I=0,2 isospin
amplitudes. In Sect. 4.1 we discuss in detail the 1/Nc cor-
rections to the matrix elements. In this context we also
calculate the bag parameters, which quantify the devia-
tions from the results obtained in the vacuum saturation

approximation and, therefore, are convenient for a com-
parison with other works. The main results of the present
analysis can be found in Sect. 4.2. Therein we give the am-
plitudes a0 and a2 as functions of the matching scale and
compare them with the data.

4.1 Hadronic matrix elements

Throughout the numerical analysis we use the following
values for the parameters [36]:

mπ ≡ (
mπ0 + mπ+

)
/2 = 137.3 MeV,

Fπ = 92.4 MeV,

mK ≡ (
mK0 + mK+

)
/2 = 495.7 MeV,

FK = 113 MeV,

mη = 547.5 MeV, θ = −19◦,

mη′ = 957.8 MeV, GF = 1.1664 · 10−5 GeV−2,

|Vud| = 0.974, |Vus| = 0.22.

Substituting them in (22) we compute L̂r
5 = 2.07 × 10−3.

We parameterize our results in terms of the non-pertur-
bative bag parameters B

(1/2)
i and B

(3/2)
i , which quantify

the deviations from the values obtained in the vacuum
saturation approximation [10]:

B
(1/2)
i =

Re〈Qi〉0
〈Qi〉VSA

0
, i ∈ {1, . . . , 8}, (32)

B
(3/2)
i =

Re〈Qi〉2
〈Qi〉VSA

2
, i ∈ {1, 2, 7, 8}, (33)

with 〈Qi〉I containing both factorizable and non-factor-
izable contributions. The VSA expressions for the matrix
elements are taken from (XIX.11)–(XIX.28) of [19].5 The
numerical values for the matrix elements of the current–
current operators are given in Tables 1 and 2. 〈Q5〉VSA

0 and
〈Q7〉VSA

0,2 are functions of R ≡ 2m2
K/(ms+md) ' 2m2

K/ms

and, consequently, depend on the renormalization scale.
For comparison, in the tables we also show the results
obtained in the large-Nc limit, see (18)–(21). One might
note that the different values generally do not coincide,
even if the small O(p4) term proportional to m2

π in (21)
[which contributes only at the level of 2% of the O(p2) tree
level term] is neglected, since in the vacuum saturation
approximation Fierz terms are taken into account which
are subleading in Nc. In particular, the matrix element
〈Q1〉VSA

0 differs by a factor of (1 − 2/Nc) from the result
obtained at the O(p2) in the large-Nc limit. We notice
that the inclusion in part of the 1/Nc corrections in the
VSA method leads to a suppression and enhancement of
the I = 0 and I = 2 amplitudes, respectively, in complete
disagreement with the data.

In Tables 3 and 4 we list our results for the hadronic
matrix elements at next-to-leading order in the chiral and

5 Note that our definition of the pion decay constant (Fπ =
92.4MeV) differs by a factor of 1/21/2 from the one used in
[19]
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Table 1. I = 0 matrix elements of the current–current opera-
tors: VSA vs. tree level (large-Nc limit), in units of 106 · MeV3

(R in units of GeV)

〈Q1〉0 〈Q2〉0 〈Q3〉0 〈Q4〉0 〈Q5〉0 〈Q7〉0
VSA −4.03 20.2 12.1 36.3 −11.7 · R2 18.2 + 32.5 · R2

tree −12.3 24.6 0 37.0 0 18.5

Table 2. Same as in Table 1, now for the I = 2 matrix elements

〈Q1〉2 〈Q2〉2 〈Q7〉2
VSA 22.8 22.8 −25.7 + 18.9 · R2

tree 17.4 17.4 −26.1

the 1/Nc expansions. The matrix elements of the current–
current operators are calculated from (18)–(31) including
the finite terms denoted by the ellipses. The results for
the operators Q6 and Q8 are taken from [20]. These re-
sults contain the leading plus next-to-leading order terms
in the chiral expansion of the density–density operators
as well as the leading 1/Nc corrections, that is to say, the
O(p0), O(p2), and O(p0/Nc). Note that the matrix ele-
ments generally contain a non-vanishing imaginary part
(scale independent at the one-loop level) which is due to
on-shell (π–π) rescattering effects.

The isospin amplitudes are largely dominated by the
operators Q1 and Q2. Therefore it is instructive to ana-
lyze in detail the 1/Nc corrections to these two operators.
To this end we next give the analytic expressions for the
isospin matrix elements of Q1 and Q2:

〈Q1〉0 = − 1√
3
Fπ

(
m2

K − m2
π

) [
1 +

4L̂r
5

F 2
π

m2
π +

1
(4π)2F 2

π

×
(

6Λ2
c −

(1
2
m2

K + 6m2
π

)
log

(
1 +

Λ2
c

m̃2

))]
+a10[m̃], (34)

〈Q2〉0 =
2√
3
Fπ

(
m2

K − m2
π

) [
1 +

4L̂r
5

F 2
π

m2
π +

1
(4π)2F 2

π

×
(

15
4

Λ2
c +

(11
8

m2
K − 15

4
m2

π

)
log

(
1 +

Λ2
c

m̃2

))]
+a20[m̃], (35)

〈Q1〉2 = 〈Q2〉2

=

√
2
3
Fπ

(
m2

K − m2
π

) [
1 +

4L̂r
5

F 2
π

m2
π +

1
(4π)2F 2

π

×
(

−3Λ2
c +

(1
4
m2

K + 3m2
π

)
log

(
1 +

Λ2
c

m̃2

))]
+a21[m̃]. (36)

Equations (34)–(36) allow us to compare our results with
the analytic expressions of [18]. First, we note that the
modified matching which was discussed in Sect. 2 increases

the terms quadratic in the cutoff by a factor of 3/2 relative
to the results presented therein. This was already observed
in [30]. The modification of the quadratic terms provides
an additional octet enhancement in the long-distance do-
main. The logarithmic terms, on the other hand, are mod-
ified only on account of the presence of the η0. To be ex-
plicit, in the octet limit [i.e., in the absence of the η0, with
a = b = 1 and m2

η = (4m2
K −m2

π)/3 ] the coefficient of the
logarithm in (34) is reduced to (m2

K/2+10m2
π/3) whereas

the other terms remain unchanged. The separation of the
logarithmic and the finite terms in (34)–(36) is arbitrary
and is done, for comparison with [18], by introducing a
mass scale replacing the dependence of the exact expres-
sions on the meson masses in the chiral logarithms. The
logarithmic and the finite terms (aiI) defined in this way
each depend on the choice of the mass scale m̃, whereas
the sum of all contributions is independent of this pa-
rameter. We calculated the complete finite terms arising
from the non-factorizable loop diagrams using the match-
ing prescription advocated in [20,30].6 These terms were
not included in [18]. Consequently, the numerical values of
the matrix elements reported therein exhibit a dependence
on the specific choice of the mass scale in the logarithms
which is absent in the present calculation.

In Table 5 we split up the numerical values for the
I = 0 and I = 2 matrix elements of Q1 and Q2 with
respect to the quadratic, the logarithmic, and the finite
terms, respectively, at a cutoff scale of Λc = 800 MeV.
From the table we see that the finite terms are of the
same order of magnitude as the logarithmic ones and,
therefore, must be considered at the same level in the nu-
merical analysis. These terms are generally suppressed by
a factor of δ ≡ m2

K,π/(4πFπ)2 < 20% with respect to
the leading O(p2) tree level. In addition, as can be seen
from (34)–(36) and Table 5, no coefficient larger than one
or two which could significantly enhance them has been
found. This is different from the quadratic terms which
are not suppressed as their relative size is determined by
∆ ≡ Λ2

c/(4πFπ)2 and, moreover, they appear with larger
prefactors [even as large as six in (34)].7 Consequently,
in the case of the I = 0 matrix elements of Q1 and Q2

6 For details on the computation of the loop integrals see
Appendix B of [20]

7 It is interesting to note that the non-suppression of the
quadratic terms presumably could be important for Q6 but
less important for Q8. On the one hand, the first non-vanishing
tree level contribution to the operators Q6 and Q8 is of the
O(p2) and O(p0), respectively. On the other hand, the first
non-vanishing quadratic corrections to both operators are of
the O(p2/Nc) (terms of the O(p0/Nc) were found to be only
logarithmic [20]). Consequently, in the case of Q8 the quadratic
terms are (chirally) suppressed by a factor of p2 ·∆ with respect
to the (leading) tree level contribution whereas in the case of
Q6 they bring about only a factor of ∆. Quadratic terms, even
though subleading in Nc, could therefore significantly affect the
matrix element of Q6 especially if large prefactors are observed
as for Q1 and Q2 in (34)–(36). This difference between the Q6

and Q8 operators could play an important role for ε′/ε. This
point will be investigated in [37]
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Table 3. Hadronic matrix elements of Q1,...,5,7 (in units of 106 · MeV3) and Q6,8

(in units of R2 · MeV) in the isospin limit for the I = 0 amplitudes, shown for
various values of the cutoff Λc

Λc 0.5GeV 0.6GeV 0.7GeV 0.8GeV 0.9GeV 1.0GeV

〈Q1〉0 −27.4 −33.2 −40.2 −48.2 −57.3 −67.4 −5.55i
〈Q2〉0 50.0 58.8 68.8 79.9 92.4 106 11.1i
〈Q3〉0 0.04 0.05 0.03 −0.02 −0.12 −0.26 0
〈Q4〉0 77.5 92.1 109 128 150 173 16.6i
〈Q5〉0 −0.04 −0.05 −0.03 0.02 0.12 0.26 0
〈Q6〉0 −44.1 −38.6 −33.7 −29.4 −25.5 −21.9 0
〈Q7〉0 34.4 40.1 46.6 54.1 62.6 72.2 8.32i
〈Q8〉0 118 119 119 119 118 117 36.7i

Table 4. Same as in Table 3, now for the I = 2 amplitudes

Λc 0.5GeV 0.6GeV 0.7GeV 0.8GeV 0.9GeV 1.0GeV

〈Q1〉2 6.54 2.51 −2.26 −7.77 −14.0 −21.1 −3.45i
〈Q2〉2 6.54 2.51 −2.26 −7.77 −14.0 −21.1 −3.45i
〈Q7〉2 −14.5 −10.7 −6.27 −1.15 4.67 11.2 5.18i
〈Q8〉2 39.9 35.3 31.2 27.2 23.2 18.8 −11.5i

Table 5. Different contributions to the hadronic matrix elements of Q1

and Q2 (in units of 106 · MeV3) for Λc = 800MeV and m̃ = 300MeV

〈Q1〉0 〈Q1〉2 〈Q2〉0 〈Q2〉2
tree −12.3 17.4 24.6 17.4
Λ2

c −34.5 −24.4 43.1 −24.4
log Λc[m̃] 4.43 3.13 10.0 3.13

finite −5.83 − 5.55i −3.90 − 3.45i 2.20 + 11.1i −3.90 − 3.45i

total −48.2 − 5.55i −7.77 − 3.45i 79.9 + 11.1i −7.77 − 3.45i

both the logarithmic and the finite corrections are mod-
erate, and the chiral limit gives a satisfactory represen-
tation of the full amplitude provided that the matching
scale is taken sufficiently large (Λc & 500–600 MeV). In
the case of the I = 2 matrix elements we also observe
that the quadratic terms are enhanced with respect to the
tree level, whereas the logarithmic and the finite terms
are largely suppressed. However, in this case the quadratic
corrections counteract the tree level, and the sum of both
contributions is no longer large compared to the logarith-
mic and the finite terms. Therefore the neglect of either
of the terms is no longer justified. In particular, we ob-
serve that for the ∆I = 3/2 channel the chiral limit gives
a better approximation to the exact result than a calcu-
lation which includes only the logarithms without taking
into account the finite terms. This remark also holds for
the matrix element 〈Q1〉0. Finally, we note that variation
of the mass scale in the logarithms [mπ < m̃ < mK ] in
[18] has a noticeable effect on the numerical value of the
I = 2 amplitude.

When comparing the results of the present analysis
with those of [18] one has to take into account another
difference in the treatment of the next-to-leading order
terms: in (34)–(36) we used 1/Fπ rather than the bare
parameter 1/f as was done in [18]. Formally, the differ-
ence concerns higher order effects, as we already discussed
above. However, since the factorizable scale which appears
in the bare coupling f will be absorbed by factorizable
loop corrections to the matrix elements at the next or-
der in the parameter expansion, it has not to be matched
to any short-distance contribution. Consequently, it is a
more adequate choice to use the physical decay constant
in the expressions under consideration. The effect of this
different treatment of the next-to-leading order terms will
be further discussed in Sect. 4.2.

In Tables 6 and 7 we list the values we compute for
the bag parameters B

(1/2)
i and B

(3/2)
i . We find a large en-

hancement of B
(1/2)
1 and B

(1/2)
2 over the VSA result, which

constitutes the dominant contribution, at long distances,
to the ∆I = 1/2 transition in K → ππ decays. Moreover,
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Table 6. Bag parameters for the I = 0 amplitudes, shown for
various values of the cutoff. B

(1/2)
5,7,8 depend on R ' 2m2

K/ms

and are calculated for a running ms(µ = Λc) at the leading log-
arithmic order (ΛQCD = 325MeV) with ms(1GeV) = 175MeV

Λc 0.5GeV 0.6GeV 0.7GeV 0.8GeV 0.9GeV 1.0GeV

B
(1/2)
1 6.75 8.24 9.98 12.0 14.2 16.6

B
(1/2)
2 2.47 2.91 3.41 3.96 4.57 5.23

B
(1/2)
3 0.003 0.004 0.002 −0.002 −0.010 −0.021

B
(1/2)
4 2.12 2.54 3.00 3.53 4.13 4.75

B
(1/2)
5 0.0004 0.0009 0.0005 −0.0003 −0.0014 −0.0020

B
(1/2)
6 1.26 1.10 0.96 0.84 0.72 0.62

B
(1/2)
7 0.15 0.16 0.18 0.21 0.23 0.26

B
(1/2)
8 1.20 1.21 1.21 1.21 1.20 1.19

Table 7. Same as in Table 6, now for the I = 2 amplitudes.

Λc 0.5GeV 0.6GeV 0.7GeV 0.8GeV 0.9GeV 1.0GeV

B
(3/2)
1 0.29 0.11 −0.10 −0.34 −0.61 −0.92

B
(3/2)
2 0.29 0.11 −0.10 −0.34 −0.61 −0.92

B
(3/2)
7 −0.15 −0.10 −0.06 −0.01 0.04 0.09

B
(3/2)
8 0.72 0.64 0.56 0.49 0.42 0.34

we obtain the correct scale dependence counteracting the
scale behavior of the Wilson coefficients z1 and z2, which
leads to an acceptable matching (see Sect. 4.2). In view of
the large corrections one might question the convergence
of the 1/Nc expansion. However, there is no strong reason
for such doubts because the non-factorizable contribution
we consider in this paper represents the first term in a
new type of a series absent in the large-Nc limit. It is rea-
sonable to assume that this leading non-factorizable term
carries a large fraction of the whole contribution [18] (see
also the discussion in Sect. 4.2). B

(1/2)
3 and B

(1/2)
5 turn

out to be very close to zero. This property is due to the
vanishing tree level as well as to the small 1/Nc correc-
tions proportional to m2

π/(4πFπ)2, see (25) and (30). We
notice that the small contribution of the operator Q5 to
ε′/ε is even further reduced when replacing the VSA ex-
pression for 〈Q5〉0, which is commonly used in the analysis
of ε′/ε [34], by the result presented in this paper. B

(1/2)
7

and B
(3/2)
7 are also found to be significantly reduced with

respect to the vacuum saturation approximation. In par-
ticular, B

(3/2)
7 turns out to be negative for small values of

the cutoff.8 We also notice a decrease of the B
(3/2)
1 and

8 Very recently [38] the first non-trivial 1/Nc corrections to
the matrix elements of Q7 were evaluated using the methods
of [39]. The numerical results were also sensitive to the choice
of the renormalization scale. In particular, negative values for
B

(1/2)
7 and B

(3/2)
7 were found below µ . 1.3GeV, in qualitative

agreement with the results of the present analysis but in dis-

B
(3/2)
2 parameters, which are relevant for A2. However,

as we will see below, their scale dependence largely over-
compensates for the variation of the short-distance coef-
ficient functions. Nevertheless, as the values are found to
be reduced, they generally account for the reduction of
the I = 2 amplitude. Finally, B

(1/2)
6 receives only small

corrections whereas B
(3/2)
8 turns out to be substantially

reduced relative to the VSA result [20]. The numerical
implications for ε′/ε will be investigated elsewhere [37].
One might note that the numerical values of B

(3/2)
8 shown

in Table 7 differ from the ones given in Table 2 of [20].
This is due to the fact that in the present paper we in-
clude only the real part of the hadronic matrix elements
in the definition of the Bi parameters (see Sect. 4.2).

4.2 The ∆I = 1/2 rule

We next investigate the CP conserving amplitudes Rea0
and Rea2. To this end we start from the expression for
the isospin amplitudes AI which contain the (π–π) strong
interaction phase shift for the I = 0 and the I = 2 final
states, respectively,

AI=0,2 =
GF√

2
VudV

∗
us

∑
i

ci(µ)〈Qi(µ)〉I=0,2. (37)

Then

ReaI =
GF√

2
VudV

∗
us

∣∣∣ ∑
i

zi〈Qi〉I

∣∣∣
=

GF√
2

VudV
∗
us

1
cos δI

∑
i

ziRe〈Qi〉I . (38)

Within an exact realization of non-perturbative QCD the
two expressions in (38) are equivalent. However, in the ap-
proximate low-energy calculation of the present work the
long-distance imaginary part which we computed at the
one-loop level (see Tables 3 and 4) is not expected to be of
the same accuracy as the real part obtained at this level. In
particular, as the one-loop (long-distance) imaginary part
is scale independent, it cannot compensate for the scale
dependence of the Wilson coefficients zi leading to a scale
dependent imaginary part of the total amplitude. This re-
quires a calculation of the (long-distance) imaginary part
at least at the two-loop level which will introduce a scale
dependence. In addition, the two-loop contribution is ex-
pected to be of the same order of magnitude as the one-
loop contribution which only appears at the level of the fi-
nite terms, as it will bring about a quadratically divergent
term. This situation is analogous to the non-suppression
of the one-loop contribution to the real part (∼ ∆) with
respect to the tree level. The two-loop contribution to the
real part, on the other hand, is expected to be suppressed
by at least a factor of δ with respect to the tree level and

agreement with the large positive values obtained in the chiral
quark model at a matching scale of 0.8GeV [40]
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Table 8. Rea0 and Rea2 (in units of 10−4 MeV) for
ms(1GeV) = 175MeV, ΛQCD = Λ

(4)
MS

= 325MeV, and vari-
ous values of the matching scale µ = Λc

Rea0 Rea2

Λc LO NDR HV LO NDR HV

0.5GeV 3.90 0.74 4.48 0.063 0.086 0.063
0.6GeV 3.50 2.58 3.57 0.027 0.032 0.028
0.7GeV 3.53 2.89 3.45 −0.025 −0.028 −0.025
0.8GeV 3.75 3.13 3.58 −0.090 −0.101 −0.095
0.9GeV 4.08 3.42 3.83 −0.167 −0.188 −0.178
1.0GeV 4.49 3.76 4.17 −0.257 −0.289 −0.274

exp. 3.33 0.15

the one-loop contribution. This is analogous to the one-
loop logarithmic and finite terms which are suppressed by
a factor of δ with respect to the tree level. For the nu-
merical analysis we will therefore consider only the real
part of the matrix elements [see the second expression in
(38)] using the experimental values of the final state in-
teraction phases, δexp

0 = (37 ± 3)◦ and δexp
2 = (−7 ± 1)◦

[41]. This procedure has also been followed in [42]. How-
ever, as the imaginary part is a loop effect (suppressed by
a factor of δ with respect to the tree level contribution),
its effect on the absolute value of the amplitude strictly
speaking is of the two-loop order. Consequently, we will
also compare our results with the ones obtained by taking
the (long-distance) imaginary part to zero, i.e., by taking∑

i zi〈Qi〉I =
∑

i ziRe〈Qi〉I . This holds for an estimate of
the size of higher order effects which is generally disre-
garded in the literature.

In Table 8 we show the numerical values of the ampli-
tudes for various values of the matching scale and fixed
values of ΛQCD = Λ

(4)
MS

and the strange quark mass ms.
The numerical analysis is done using the leading logarith-
mic as well as the next-to-leading logarithmic values of the
Wilson coefficients listed in the Appendix. The NLO val-
ues are scheme dependent and are calculated within naive
dimensional regularization (NDR) and in the ’t Hooft–
Veltman scheme (HV), respectively.9 The difference be-
tween the two NLO results at a given scale reveals the
uncertainty due to the lack of any reference to the renor-
malization scheme dependence in the effective low-energy
calculation.

In Fig. 3 we show Rea0 calculated with leading or-
der Wilson coefficients for various values of ΛQCD as a
function of the matching scale. We take the (conserva-
tive) range of ΛQCD = 325 ± 80 MeV which corresponds
to αs(MZ) = 0.118 ± 0.005 [34]. First, we note that our
result for a0 shows an additional enhancement (around
30–50% of the experimental value) compared to the result
of [18] which renders the amplitude in good agreement
with the observed value for low values of the scale or even

9 We are very thankful to M. Jamin for providing us with the
numerical values of the Wilson coefficients used in this section

Λc (MeV)
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Fig. 3. Rea0 (in units of MeV) with LO zi for ms(1GeV) =
175MeV and various values of ΛQCD as a function of the
matching scale Λc = µ

larger than the experimental value for large values of the
scale. A significant enhancement arises from the Q1 and
Q2 operators due to the modified matching prescription
in the non-factorizable sector we discussed above. Numer-
ically, at a scale of Λc = 800 MeV the modified momen-
tum routing accounts for approximately 20% of the fi-
nal number(s) presented in Fig. 3. Another enhancement
with respect to [18] originates from the correction of the
real part by the experimental phase [see (38)]. Neglect-
ing completely the effect of the (π–π) phase shift would
reduce our result by a factor of cos δ0 ' 0.8. The remain-
der is due to the choice of the physical value Fπ instead
of f in the next-to-leading order terms of the factoriz-
able and non-factorizable corrections. Our result depends
only moderately on the matching scale although the sta-
bility falls off for large values of the scale around 1 GeV.
We observe a cancellation between the scale dependence
of the short- and long-distance contributions, i.e., the op-
erator evolution in the quark picture is continued with
the same pattern in the meson picture. The main uncer-
tainty displayed in Fig. 3 originates from the dependence
of the Wilson coefficients on ΛQCD. The uncertainty in-
creases for very low values of the scale reflecting the poor
perturbative behavior expected at those scales especially
for the large value of ΛQCD = 405 MeV. Within the (con-
servative) range of ΛQCD = 325 ± 80 MeV we considered,
the value 405 MeV leads to the most distinct deviation
from the experimental result which, however, does not ex-
ceed approximately 20% of the observed value in the range
600 MeV . Λc . 800 MeV where the minimum occurs and
the dependence on the scale is weak.
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Fig. 4. Rea0 (in units of MeV) with LO and NLO zi for
ms(1GeV) = 175MeV and various values of ΛQCD as a func-
tion of the matching scale Λc = µ

In Fig. 4 we compare the results for Rea0 we obtain
using the LO and NLO Wilson coefficients, respectively.
In the HV scheme, for moderate values of ΛQCD intro-
ducing the NLO coefficients does not significantly affect
the numerical values of the ∆I = 1/2 amplitude which
is found to be only slightly suppressed with respect to
the LO result. The main effect of the NLO coefficients is
that they further reduce the dependence on the match-
ing scale. This statement does not hold within the NDR
scheme. In this scheme, for ΛQCD = 245 MeV the effect
of the NLO coefficients is also moderate but noticeably
increases for large values of ΛQCD leading to a distinct
suppression of the LO result. For values of ΛQCD as large
as 405 MeV both the HV and the NDR results rapidly di-
verge for low values of the matching scale (. 700 MeV)
indicating the loss of perturbativity. Taking into account
the fact that we do not incorporate the effects of higher
resonances and cannot adopt too high values of the scale,
a choice of Λc around 700–800 MeV seems to be most ap-
propriate. For ΛQCD = 325 MeV (245 MeV) the effect of
the NLO coefficients is less pronounced, and scales as low
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Fig. 5. Rea0 (in units of MeV) with LO zi for ΛQCD =
325MeV and various values of ms(1GeV) as a function of the
matching scale Λc = µ

as 600–650 MeV (500 MeV), where the LO minimum oc-
curs, appear to be acceptable. Above these scales the de-
viation of the NLO results from the experiment does not
exceed 20–25% of the experimental value. Moreover, the
difference between LO and NLO (HV and NDR) values
is moderate, of the order of at most 20–25% of the ob-
served value.10 In all the cases the tendency for a large
enhancement of the required size remains present.

In Fig. 5 we show the weak dependence of Rea0 (with
LO Wilson coefficients) on the strange quark mass which
arises from the matrix element of the gluon penguin op-
erator [〈Q6〉0 ∝ 1/m2

s]. We notice that the contribution
from Q6 to the ∆I = 1/2 amplitude for small values of
the cutoff (∼ 600 MeV) roughly varies between 10–20% of
the total value and significantly decreases for large values
of Λc. This behavior is also found when the NLO coef-
ficients are used. The effect of the remaining (penguin)
operators is very small (below 1% of the total result ex-
cept for Q4 which contributes at the level of −3%). For
comparison, in Fig. 5 we also show Rea0 calculated in the
chiral limit. We observe that the result obtained in the chi-
ral limit, for reasons explained above, is rather close to the
numerically exact one, that is to say, the logarithmic and
the finite terms in the non-factorizable corrections to the
matrix elements are of minor importance provided that
the matching scale is taken sufficiently large (Λc & 500–
600 MeV). Finally, we note that the presence of the η0

10 The comparison of the LO and NLO coefficients should be
used with caution as it partly originates from a change in the
value of the QCD coupling for a chosen value of ΛMS [19]
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Fig. 6. Rea2 (in units of MeV) with LO zi for various values
of ΛQCD as a function of the matching scale Λc = µ

does not affect the numerical values of the amplitudes (in
the octet limit the numbers given in Table 8 change by less
than 1%).

In distinction to the ∆I = 1/2 amplitude, the ∆I =
3/2 amplitude depicted in Fig. 6 (with LO Wilson coeffi-
cients) is highly unstable. In addition, the numerical val-
ues lie well below the measured value. The amplitude even
changes sign [due to the large negative coefficient of the
quadratic term in (36)]. The large uncertainty can be un-
derstood, as we already discussed above, from the fact
that the two numerically leading terms, the tree level and
the one-loop quadratically divergent term, have approxi-
mately the same size but opposite sign. On the one hand,
this property is generally welcomed as it explains the ori-
gin of the suppression of the ∆I = 3/2 amplitude which
turns out to be sufficiently suppressed whatever the par-
ticular chosen scale is between 600 MeV and 900 MeV. On
the other hand, the large cancellation implies that the re-
sult will be significantly affected by higher order terms
which are expected to be of the order of the one-loop log-
arithmic and finite terms. We note that the agreement
with the experimental value is not improved in the chiral
limit. We also notice that the numerical values depicted
in Fig. 6 depend only weakly on the choice of ΛQCD. In
Fig. 7 we compare the results for Rea2 we obtain using
the LO and NLO Wilson coefficients, respectively. We ob-
serve that the effect of the NLO coefficients is negligible
with respect to the large discrepancy between our results
and the observed value. The small effect of the NLO co-
efficients indicates the validity of perturbation theory and
further supports the supposition that the discrepancy is
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Fig. 7. Rea2 (in units of MeV) with LO and NLO zi for various
values of ΛQCD as a function of the matching scale Λc = µ

due the lack of accuracy in the low-energy part of the
calculation.

The typical size of higher order effects in the calcu-
lation of the hadronic matrix elements can be estimated
in various ways. First, as we already mentioned above,
one may replace in all NLO terms the coefficient 1/Fπ by
1/FK . The results obtained in this case [denoted by (b)]
are shown in Figs. 8 and 9. The ∆I = 1/2 amplitude is
suppressed by approximately 20% with respect to the re-
sult we obtained using 1/Fπ [denoted by (a)] and is even in
better agreement with the observed value. The ∆I = 3/2
amplitude, on the other hand, is enhanced but still far
too much suppressed. Another estimation of higher order
effects can be done, as we explained above, by completely
neglecting the imaginary part of the matrix elements (c).
This suppresses Rea0 by a factor of cos δexp

0 ' 0.8 but does
not affect Rea2. Similarly the absolute value of the ampli-
tudes can be calculated by taking directly the imaginary
part from Tables 3 and 4 without using the experimental
phases (d). This procedure suppresses Rea0 in the same
way as in the previous case but largely re-stabilizes Rea2,
indicating that the results obtained for the ∆I = 3/2 am-
plitude (unlike those obtained for Rea0) indeed can be
significantly affected by higher orders corrections. It is un-



T. Hambye et al.: New analysis of the ∆I = 1/2 rule in kaon decays and the B̂K parameter 283

Λc (MeV)

(a)

(b)

(c)

(d)

(e)

experiment

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x 10
-3

600 650 700 750 800 850 900 950 1000

Fig. 8. Rea0 (in units of MeV) with LO zi for ms(1GeV) =
175MeV and ΛQCD = 325MeV within different treatments of
higher order corrections as explained in the text

likely, however, that higher order terms alone can account
for the large discrepancy between our result and experi-
ment, and effects from higher resonances are also expected
to be non-negligible for the small ∆I = 3/2 amplitude.
Finally, the coefficient 1/Fπ in the next-to-leading order
terms can also be replaced by the bare coupling 1/f as
was done in [18]. Even though this would introduce an
unphysical dependence on the factorizable scale, formally
the difference also concerns higher order effects.11 We ob-
serve that this choice (e) leads to a result for Rea0 which
is approximately scale independent. It also gives a more
stable result for Rea2 which, however, still is too much
suppressed.

In summary, in all cases we discussed above the ∆I =
1/2 amplitude is obtained around the measured value with
an uncertainty of less than 25% or in most cases even less
than 15%.12 The result for Rea0 is consequently solid and
presumably could be significantly affected only by higher
resonances. In view of the good agreement with the exper-
iment we obtained at the pseudoscalar level their effect a
priori is expected to be small. The ∆I = 3/2 amplitude,
on the other hand, though showing the qualitatively cor-

11 The relation between Fπ and f is given in (62) of [20]
and we obtain f = 105, 112, 120, 128, 136, 145MeV for Λc =
500, 600, 700, 800, 900, 1000MeV, respectively
12 The only exception to this is the case where the large value
of ΛQCD = 405MeV is taken at LO or NLO (HV scheme) using
a matching scale as high as ∼ 1GeV. In this (unfavorable) case
the deviation from the observed value can be as large as 35–
40%
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Fig. 9. Rea2 (in units of MeV) with LO zi for ΛQCD =
325MeV within different treatments of higher order correc-
tions as explained in the text

rect behavior of being suppressed with respect to the VSA
result, emerges too much suppressed and is very unstable.
However, higher order corrections to the matrix elements
have been estimated large and could re-enhance it. In the
same way higher resonances could easily enhance the re-
sult obtained at the pseudoscalar level. Vector mesons can
be incorporated in a straightforward (however lengthy)
way, and it would be very interesting to investigate their
effect in the present calculation. This also would allow
more safely to choose higher values for the matching scale
for which the short-distance contributions are more reli-
able.

We close this section by a brief review of several other
attempts which have been made to explain the ∆I = 1/2
rule using different methods for the computation of the
hadronic matrix elements. Interesting tendencies for an
enhancement of the ∆I = 1/2 channel were found in par-
ticular in [11] by integrating out the quark fields in a glu-
onic background and in [12] in the framework of QCD sum
rules at the level of the inclusive two-point function. In [13]
quantitative results reproducing both the ∆I = 1/2 and
∆I = 3/2 channels were obtained adopting the point of
view that in addition to 1/Nc effects due to one-loop cor-
rections (similar to those of Fig. 2) diquark states play an
important role. The results for the ∆I = 1/2 amplitude
obtained in the present approach suggest that there are
no large diquark effects not already taken into account in
the 1/Nc corrections we calculated. The ∆I = 1/2 rule
has also been investigated in the framework of chiral per-
turbation theory [14] and the chiral quark model [15]. At
the present state of these methods the ratio 1/ω = 22.2
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cannot be predicted but is used to fit parameters of the
models. Very recently the matrix elements relevant for the
∆I = 1/2 rule were studied in lattice QCD with improved
statistics [16]. The authors used lowest-order chiral pertur-
bation theory to relate the matrix elements 〈ππ|Qi|K0〉
to 〈π+|Qi|K+〉 and 〈0|Qi|K0〉 calculated on the lattice.
The ratio of the amplitudes computed in this way con-
firms the significant enhancement of the ∆I = 1/2 chan-
nel although systematic uncertainties preclude a definite
answer. Whereas the ∆I = 1/2 amplitude is obtained
larger than the experimental value by approximately 40%
(quenched ensemble13, β = 6.0) the ∆I = 3/2 ampli-
tude suffers from ambiguities in the choice of the meson
mass due to the ignorance of higher order chiral correc-
tions to the relation between Rea2 and the BK parameter.
Taking the meson mass M2 = (m2

K + m2
π)/2 and using

the quenched value of BK in the continuum limit the au-
thors obtain a value for Rea2 which also over-estimates
the data by approximately 40%. The ratio of the ampli-
tudes exhibits a strong dependence on the meson mass
(see Fig. 11 of [16]) due to the chiral behavior of Rea2. In
lattice perturbation theory unlike in analytical methods,
the matching of the renormalized operators to the Wilson
coefficients can be rigorously done, at least in principle
(see e.g. [45] and references therein). On the other hand,
analytical methods like the 1/Nc approach followed in this
paper allow for a direct evaluation of the K → ππ am-
plitudes without the need of using reduction formulas to
relate these amplitudes to the off-shell K → π amplitudes
(for this point see also [46] and references therein).

While this paper was written an analysis of the ∆I =
1/2 rule was published [47] which follows similar lines of
thought as our work. In their analysis the authors used
the 1/Nc expansion in the chiral limit in the framework
of chiral perturbation theory and the extended Nambu–
Jona–Lasinio model, respectively. We agree on the coef-
ficients of the quadratically divergent terms in the 1/Nc
corrections to the matrix elements quoted therein. In the
present analysis we did not investigate the method pro-
posed in [47] to treat the scheme dependence appearing
at the next-to-leading logarithmic order.

5 K0–K̄0 mixing

The contributions of short-distance physics to K0–K̄0

mixing can be calculated from an effective ∆S = 2 hamil-
tonian, valid below the charm threshold, in which the
heavy degrees of freedom are integrated out [32],

H∆S=2
eff = F(m2

t , m
2
c , M

2
W , VCKM)G2

F

× [αs(µ)]−2/9
[
1 +

αs(µ)
4π

J3

]
O∆S=2, (39)

where O∆S=2 is the following four-quark operator:

O∆S=2 = s̄LγµdLs̄LγµdL, (40)
13 Quantitative estimates of quenching effects on the coeffi-
cients of the chiral logarithms in the one-loop contributions to
the K → ππ amplitudes were presented in [43,44]. In [43] finite
volume effects on the lattice were also investigated

with αs(µ) being the QCD running coupling with three
active flavors and J3 a renormalization scheme dependent
coefficient appearing at the next-to-leading logarithmic
order. F(m2

t , m
2
c , M

2
W , VCKM) is a known function of the

heavy quark masses, the W boson mass, and CKM ma-
trix elements. It incorporates the basic electroweak (box
diagram) loop contributions [48] as well as the perturba-
tive QCD effects described through the correction factors
η1, η2, η3 which have been calculated at the leading log-
arithmic [4,49] and the next-to-leading logarithmic order
[32,33]. Terms depending on αs(µ) are factored out ex-
plicitly to exhibit the renormalization scale (and scheme)
dependence of the coefficients which has to cancel the cor-
responding scale (and scheme) dependence of the hadronic
matrix element of O∆S=2 [19]. The short-distance hamil-
tonian for ∆S = 2 transitions in (39) dominates the in-
direct CP violation in the neutral kaon system param-
eterized by ε. Contributions to K0–K̄0 mixing changing
strangeness by two units through two ∆S = 1 transitions
at long distances which are relevant for the KL −KS mass
difference [29] are not considered in this article.

The hadronic matrix element of O∆S=2 is usually pa-
rameterized in terms of the BK parameter which quanti-
fies the deviation from the value obtained in the vacuum
saturation approximation:

〈K̄0|O∆S=2(µ)|K0〉 = BK(µ)〈K̄0|O∆S=2|K0〉VSA, (41)

where
〈K̄0|O∆S=2|K0〉VSA =

4
3
F 2

Km2
K . (42)

It is convenient to introduce the renormalization group
invariant parameter [19,50]

B̂K = BK(µ) [αs(µ)]−2/9
[
1 +

αs(µ)
4π

J3

]
,

J3 =

{
307
162 (NDR)
91
162 (HV)

, (43)

in which the scale (and scheme) dependences of the long-
and short-distance contributions cancel within an exact re-
alization of both perturbative and non-perturbative QCD.
However, from the results for the ∆I = 3/2 K → ππ am-
plitude discussed in the previous section we do not expect
that the B̂K we will obtain within the pseudoscalar ap-
proximation used in the low-energy calculation will exhibit
a negligible dependence on the matching scale; the 27-plet
operators which induce ∆S = 1 (∆I = 3/2) and ∆S = 2
transitions are components of the same irreducible tensor
under SU(3)L × SU(3)R, that is to say, to leading order
in the chiral expansion the K0–K̄0 amplitude can be re-
lated to the ∆I = 3/2 part of the K → ππ amplitude
using SU(3) symmetry [51,52]. Consequently, we expect
a similar pattern, i.e., a large negative quadratic term in
the 1/Nc corrections to the matrix element which partly
cancels the tree level contribution and renders the result
more sensitive to corrections from higher order terms and
higher resonances. On the other hand, we expect SU(3)
breaking effects in ∆S = 2 transitions to be more pro-
nounced than in ∆S = 1 transitions [53]. In the following
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Fig. 10. Factorizable contributions to the matrix element of
the K0–K̄0 mixing amplitude in the isospin limit

we will see that the 1/Nc expansion restricted to the pseu-
doscalar mesons indeed leads to a significantly scale de-
pendent result for B̂K . However, the scale dependence is
less pronounced than the one of the ∆I = 3/2 amplitude
due to corrections beyond the chiral limit. Finally, as we
already discussed above, the low-energy calculation does
not allow any reference to the renormalization scheme de-
pendence. Nevertheless, a comparison of the B̂K param-
eter obtained from the LO and NLO coefficient function
of O∆S=2 can be used to test the validity of perturbation
theory and to estimate the uncertainties arising from the
short-distance part.

5.1 Factorizable loop corrections

To obtain the factorizable non-perturbative corrections to
the ∆S = 2 transition we have to calculate the diagrams
in Fig. 10. Using the chiral representation of the quark cur-
rent in (16) and reducing the result to the basic integrals
listed in Appendix B of [20] we obtain the unrenormalized
(bare) matrix element:

〈K̄0|O∆S=2|K0〉F
(0)

= m2
Kf2

[
1 +

16L5

f2 m2
K − 1

9f2

(
(a + 2b)2 I1[mη]

+2 (a − b)2 I1[mη′ ] + 18I1[mK ] + 9I1[mπ]
)]

, (44)

with a and b defined in (15). Multiplying (44) with Z−1
K ,

i.e., including a factor Z
−1/2
K for each external kaon field

(compare (16) and (59) of [20]), we arrive at

〈K̄0|O∆S=2|K0〉F

= m2
Kf2

[
1 +

8L5

f2 m2
K − 1

12f2

(
9I1[mπ] + 18I1[mK ]

+ (a + 2b)2 I1[mη] + 2 (a − b)2 I1[mη′ ]
)]

. (45)

Comparing (45) with (26) and (63) of [20] we observe that
the correction factor in the brackets which is due to the
higher order (factorizable) contributions to the matrix el-
ement is completely absorbed (including the finite terms)
in the renormalization of the kaon decay constant, as is re-
quired by current conservation, leading to the final result
for the (renormalized) factorizable matrix element

〈K̄0|O∆S=2|K0〉F
(r) = m2

KF 2
K . (46)

(ds)(ds) (ds)(ds)

(ds)(ds)

(ds)(ds)

Fig. 11. Non-factorizable contributions to the matrix element
of the K0–K̄0 mixing amplitude in the isospin limit

Equation (46) represents the large-Nc limit for the K0–K̄0

matrix element, i.e., BNc→∞
K = 3/4, to be compared with

the VSA value one.

5.2 Non-factorizable loop corrections

The 1/Nc corrections to (46) can be calculated from the
non-factorizable loop diagrams depicted in Fig. 11. We de-
termine the loop momenta along the lines developed in
Sect. 2, that is to say, by associating the cutoff to the effec-
tive color singlet boson connecting the two currents. The
simple structure of the non-factorizable diagrams makes
it possible to specify the complete analytic result for the
matrix element in terms of loop integrals. In the SU(2)
limit the expression in which the integrals are reduced to
the basic ones reads

〈K̄0|O∆S=2|K0〉NF

=
Λ4

c

32π2 +
1
6

(
4m2

K − 2p2
K − (χ2 + χ3)

)
I1[mK ]

−1
6
(
χ2 + χ3 + 2m2

K + 2p2
K

)
m2

KI3[mK , mK , 0]

−1
2
(p2

K + m2
π)I2[mπ, pK ] − 3

2
cos2 θ(p2

K + m2
η)

×I2[mη, pK ] − 3
2

sin2 θ(p2
K + m2

η′)I2[mη′ , pK ]

+
1
4
I4[mπ, pK ] +

3
4

cos2 θI4[mη, pK ]

+
3
4

sin2 θI4[mη′ , pK ]. (47)

Here we replaced a and b by the η–η′ mixing angle θ and
explicitly distinguished between the masses coming from
the external kaon momentum, the explicit mass term in
the lagrangian, and the propagators in the loops. In ad-
dition to the logarithmically and quadratically divergent
integrals (I1, I2, I3) listed in Appendix B of [20] (47) con-
tains the integral I4 which exhibits a quartic dependence
on the cutoff. Following the steps discussed in [20] we can
give the analytic expression for I4 in terms of a Taylor-
series:

I4[m, p] =
i

(2π)4

∫
d4q

q2

(q − p)2 − m2

=
1

16π2

{
− 1

2
Λ4

c + m2
[
Λ2

c − m2 log
(

1 +
Λ2

c

m2

)]

+
p2m2

(Λ2
c + m2)2

[
3
2
Λ4

c + Λ2
cm

2 − (Λ2
c + m2)2
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× log
(

1 +
Λ2

c

m2

)]
+

p4Λ6
c

6(Λ2
c + m2)4

(Λ2
c − 2m2)

+
p6Λ6

cm
2

2(Λ2
c + m2)6

(
Λ2

c − 2
3
m2

) }
+ O(p8). (48)

We note that the logarithmically divergent integral I3 in
(47) only appears with vanishing external momentum and
therefore can be largely simplified compared to the general
expression in (75) of [20]. From (47) one can easily calcu-
late the divergent terms. Taking the external momentum
on shell we obtain

〈K̄0|O∆S=2|K0〉NF

= m2
KF 2

K

[
− 3Λ2

c

(4π)2F 2
K

+
(4m4

K − 2m2
Km2

π + m4
π)

(4π)2F 2
Km2

K

log Λ2
c + · · ·

]
, (49)

where the tree level result is factored out and the ellipses
denote the finite terms we do not specify analytically. We
observe that the quartic dependence on the cutoff is can-
celled as required by chiral symmetry.

To illustrate the effect of the modified momentum rout-
ing we also recalculate the non-factorizable loop contribu-
tions in the approach used by Bardeen et al. [26] who as-
sociated the cutoff to the momentum of the virtual meson
in the loop diagrams (see also the discussion in [20]):

〈K̄0|O∆S=2|K0〉NF
BBG

= − 1
12

[
2

(
χ2 + χ3 − 2m2

K

)
I1[mK ] + 3

(
m2

K + m2
π

)
×I1[mπ] + 9 cos2 θ

(
m2

K + m2
η

)
I1[mη]

+9 sin2 θ
(
m2

K + m2
η′

)
I1[mη′ ]

+2m2
K

(
χ2 + χ3 + 4m2

K

)
I3[mK , mK , 0]

]
, (50)

where the external momentum is already taken on shell.
For comparison with (47) in (50) we included the small
effect of the singlet η0. Solving the integrals we obtain the
divergent part of the non-factorizable loop corrections:

〈K̄0|O∆S=2|K0〉NF
BBG

= m2
KF 2

K

[
− 2Λ2

c

(4π)2F 2
K

+
(4m4

K − 2m2
Km2

π + m4
π)

(4π)2F 2
Km2

K

log Λ2
c + · · ·

]
, (51)

to be compared with (49). We note that the results ob-
tained in both calculations differ with respect to the
quadratic cutoff dependence as well as with respect to the
finite terms we do not give explicitly here for brevity.

5.3 Numerical results

As a numerical input we use the values listed in Sect. 4.1.
In Table 9 we show our results for the K0–K̄0 matrix el-
ement and BK(Λc) obtained in the full calculation, i.e.,

Λc (MeV)

ΛQCD=405 MeV

ΛQCD=325 MeV

ΛQCD=245 MeV

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

500 550 600 650 700 750 800 850 900 950 1000

Fig. 12. B̂K with LO Wilson coefficient for various values of
ΛQCD as a function of the matching scale Λc = µ. The lower set
of curves shows the results of the present analysis, the upper
set allows a comparison with [26]

including the effect of the η0 in (47). In Fig. 12 we depict
the renormalization group invariant parameter B̂K calcu-
lated with the leading order Wilson coefficient.

The decrease of BK(Λc) with Λc = µ is qualitatively
consistent with the µ dependence of the coefficient func-
tion in (43), that is to say, the long-distance evolution
counteracts the evolution in the short-distance domain.
This property is due to the presence of the quadratic
terms in the 1/Nc corrections which compensate for the
(weaker) increase of the logarithmic terms. However, the
decrease is found to be significant, and the scale depen-
dence largely exceeds what is required to have an exact
cancellation of both evolutions over a large range of the
scale. As a result an acceptable stability of B̂K is obtained
only for low values of Λc ' 500–600 MeV. The small val-
ues of B̂K depicted in Fig. 12 (lower set of curves) come
from the negative coefficient of the quadratic term in (49)
which is found to be enhanced by a factor of 3/2 com-
pared to the result of [26]. This coefficient is the same as
the one of the ∆I = 3/2 K → ππ amplitude except for
SU(3) breaking effects (responsible for FK 6= Fπ) which
reduce the negative slope of B̂K . As can be seen from
Table 9, the difference between the exact result and the
one obtained in the chiral limit (i.e., in the absence of
chiral logarithms and finite terms) is more pronounced
than in the case of the K → ππ amplitudes. This is due
mainly to the numerical coefficient of the leading term
(∼ m4

K) in front of the logarithm in (49) which, as ex-
pected, is found to be larger in ∆S = 2 transitions than
in ∆S = 1 transitions. Because of the large positive coef-
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Table 9. Different contributions to the hadronic matrix element of O∆S=2 (in
units of 109 · MeV4) and BK , shown for various values of the cutoff Λc

Λc 0.5GeV 0.6GeV 0.7GeV 0.8GeV 0.9GeV 1.0GeV

〈O∆S=2〉tree 3.14 3.14 3.14 3.14 3.14 3.14
〈O∆S=2〉Λ2

c
−1.17 −1.68 −2.29 −2.99 −3.78 −4.67

〈O∆S=2〉log+fin 0.57 0.76 0.96 1.15 1.32 1.49

〈O∆S=2〉 2.54 2.22 1.81 1.30 0.68 −0.04

BK(Λc) 0.61 0.53 0.43 0.31 0.16 −0.01

ficient the logarithmic term re-stabilizes B̂K sizably with
respect to the result obtained in the chiral limit. This also
explains why the B̂K parameter, even if significantly scale
dependent, is much more stable than the ∆I = 3/2 am-
plitude. The finite terms beyond the logarithms in (47)
[i.e., beyond the log(1 + Λ2

c/m2) terms] give a negative
contribution to BK(Λc) roughly between −0.05 and −0.08
for Λc around 600–900 MeV. Consequently, they are non-
negligible in particular for large values of the scale where
the cancellation between the tree level and the quadratic
terms is large. Finally, we note that the presence of the
η0 does not significantly affect the numerical values of the
K0–K̄0 matrix element (in the octet limit the numbers
given in Table 9 change by less than 3%).

To illustrate the effect of the momentum routing, in
Fig. 12 we also show B̂K obtained from (50) (upper set
of curves). We use the same set of parameters as in Ta-
ble 9 and also include the η0. Comparing the two results
we notice that BK(Λc) calculated within the modified mo-
mentum routing lies below the values found in the previ-
ous approach. Matching the long-distance results with the
short-distance contribution we observe that the B̂K pa-
rameter obtained in the present analysis exhibits a signif-
icantly stronger dependence on the matching scale. How-
ever, as we already discussed above, the quadratically di-
vergent terms (and the finite terms) depend on the way
we define the integration variable inside the loop. This
can be seen from the different numerical factors in front
of the quadratic terms in (49) and (51). Therefore we are
forced to find a direct link between the short- and long-
distance part of the calculation, as is done by keeping
track of the effective color singlet boson in both parts of
the calculation. A consistent matching is then obtained by
assigning the same momentum to the color singlet boson
at long and short distances and by identifying this mo-
mentum with the loop integration variable (see Sect. 2).
This property is absent in the previous approach. The
modification unambiguously determines the coefficient in
front of the (quadratically and logarithmically) divergent
terms and allows us to identify the ultraviolet cutoff of the
long-distance terms with the short-distance renormaliza-
tion scale µ. Therefore we advocate the use of the modified
matching prescription, even though the stability of our re-
sult is rather poor. The satisfactory stability obtained in
[26] on the other hand is somehow inconclusive, as there
is no underlying argumentation determining the quadratic

terms. Our result also implies that the uncertainties due
to the idealized identification of the cutoff Λc with the
upper limit of the meson momentum in the loop in [26]
might have been underestimated. In a complete meson
theory the dependence on the momentum routing should
be absent. However, as long as we are working in an ef-
fective low-energy approach as chiral perturbation theory
we have to pay attention to this point.

Numerically, we find a range of acceptable stability in
the energy regime from 500 MeV to 700 MeV (see Fig. 12)
leading to values for B̂K in the range of 0.4 < B̂K <
0.6. The lower bound corresponds to a value of ΛQCD =
405 MeV, whereas the upper bound corresponds to ΛQCD
= 245 MeV. Comparing our result with the one of [26]
we observe a tendency for B̂K to be decreased to values
below 0.6. This behavior is due to the enhancement of the
negative coefficient in front of the quadratic term in the
1/Nc corrections to the K0–K̄0 matrix element and, to a
smaller extent, also due to the finite terms omitted in [26].
However, our result suffers from a sizable dependence on
the matching scale, which precludes a precise answer.

In Fig. 13 we compare the results for B̂K we obtain
with the LO and the NLO coefficient function. For ΛQCD
= 325 MeV in the HV scheme, introducing the NLO coef-
ficient does not significantly affect the numerical values of
the B̂K parameter which is found to be only slightly en-
hanced with respect to the LO result. In the NDR scheme,
the effect of the NLO coefficient is also moderate for large
values of the scale but noticeably increases for low val-
ues. For very low values of Λc ' 500 MeV the NLO result
can differ from the LO one by as much as 0.2. However,
for these scales the scheme dependence increases rapidly
and it is desirable to take (at least) a matching scale
around 600–650 MeV where B̂K is still relatively smooth
and roughly varies between 0.45 and 0.6. For ΛQCD =
245 MeV in both the HV and NDR schemes a matching
scale as low as 500 MeV appears to be acceptable, and
within the range Λc ' 500–650 MeV B̂K is obtained be-
tween 0.5 and 0.7. On the other hand we observe that the
pseudoscalar approximation would simply fail if ΛQCD was
found as large as 405 MeV, as a satisfactory perturbative
behavior is obtained only for Λc & 700 MeV, that is to say,
for values of the scale where the stability of B̂K is found
to be poor.
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Fig. 13. B̂K with LO and NLO Wilson coefficient for various
values of ΛQCD = Λ

(4)
MS

as a function of the matching scale
Λc = µ. For each value of ΛQCD the lower (intermediate, upper)
curve shows the LO (HV, NDR) result

In summary, for values of ΛQCD & 350 MeV an esti-
mate of B̂K is hindered by the loss of perturbativity in the
range where the pseudoscalar approximation is expected
to be valid, and for lower values of ΛQCD (taking into ac-
count the scheme dependence) our calculation favors low
values of B̂K in the range

0.4 < B̂K < 0.7. (52)

However, a satisfactory smooth behavior is obtained only
in a narrow range of the cutoff and, in addition, for val-
ues of the cutoff as low as the kaon mass or just above.
Therefore the incorporation of higher resonances is clearly
required as for the ∆I = 3/2 K → ππ amplitude discussed
above. On this issue, the analysis of the B̂K parameter is
similar to the one of the ∆I = 3/2 amplitude, even if nu-
merically the matching obtained for B̂K is better than the
one obtained for the ∆I = 3/2 amplitude.

The K0–K̄0 system has been studied in the past with
various methods leading to different results for B̂K . The
present status of quenched lattice calculations [54–57] has
been reviewed in [58]. The value reported by the author is
B̂K = 0.86 ± 0.06 ± 0.06. Very recently the JLQCD Col-
laboration has presented a new analysis based on chiral
Ward identities to non-perturbatively determine the mix-
ing coefficients of the ∆S = 2 operator [59]. The numerical
results given in [59] are in agreement with the lattice cal-
culations quoted above. In the chiral quark model a value
as high as B̂K = 1.1 ± 0.2 has been obtained [15]. Lower
values for B̂K have been found in the QCD hadronic du-

ality approach [60] (B̂K = 0.39 ± 0.10), by using SU(3)
symmetry and PCAC [51] (' 1/3), or using chiral pertur-
bation theory at next-to-leading order [61] (0.42 ± 0.06).
QCD sum rules give results around B̂K = 0.5–0.6 with
errors in the range of 0.2–0.3 [62,63]. One might note that
a value for B̂K significantly below 0.7 requires simulta-
neously high values of |Vub/Vcb| and |Vcb| to be able to
fit the experimental value of ε [19]. Finally, we note that
the B̂K parameter was also investigated in the framework
of the 1/Nc expansion in [50]. In this work the match-
ing was not performed at the level of the K0–K̄0 matrix
element but at the level of a related 2-point Green func-
tion. Numerically, the matching was found to be unsat-
isfactory. We agree with this conclusion, as we discussed
above, although in [50] the quadratic dependence on the
UV cutoff was obtained in disagreement with the present
analysis due to the use of a different momentum rout-
ing. This has been corrected very recently in [47], and we
agree with the results for the 1/Nc corrections to the K0–
K̄0 matrix element obtained there in the chiral limit. In
the present paper we investigated the corrections beyond
the chiral limit and found that they are sizable. On the
other hand, the authors of [47] investigated higher order
corrections calculated in the framework of the extended
Nambu–Jona–Lasinio model. As a result they obtained a
better stability of the B̂K parameter. This shows that cor-
rections from higher order terms and higher resonances
are expected to be large. Nevertheless the values of B̂K

we obtained in this analysis by performing a full calcula-
tion at the pseudoscalar level are meaningful and can be
considered as reference values for further investigations
incorporating the effects of higher resonances.

6 Conclusions

The 1/Nc approach developed in [18,26] when modified
along the lines of [20] leads to interesting results in the
current–current sector of the ∆S = 1 and in the ∆S = 2
transitions. The main result of the present analysis is an
additional enhancement of the ∆I = 1/2 channel in the
K → ππ amplitudes. This channel has been found suf-
ficiently enhanced, in good agreement (with an accuracy
of 80 to approximately 100%) with the experiment, and
widely stable over a large range of values of the matching
scale roughly between 600 MeV and 900 MeV. It is cer-
tainly premature to say that the dynamical mechanism
behind the ∆I = 1/2 enhancement is completely under-
stood. An agreement at the level obtained in the present
analysis a priori is not expected in an effective theory with
only pseudoscalar mesons taken into account. Neverthe-
less we believe that the additional enhancement reported
here is a further important indication that the 1/Nc ap-
proach can account for the bulk of the ∆I = 1/2 ampli-
tude. This statement is also supported by the fact that
higher order corrections both of short-distance origin and
of long-distance origin at the pseudoscalar level, as we dis-
cussed above, are not expected to largely affect the size
of the ∆I = 1/2 enhancement. The agreement with the
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experiment also tends to show that the origin of the long-
distance enhancement has to be found at the level of the
pseudoscalar mesons and at energies below the rho mass
or even below the kaon mass. Certainly this has to be
checked explicitly incorporating at least the effects of vec-
tor mesons. We also believe that the 1/Nc approach can
account for the bulk of the suppression of the ∆I = 3/2
channel. For this channel, however, the approximations
made in the present analysis fell short of the desired ac-
curacy. In particular, a large scale dependence has been
found clearly requiring the incorporation of higher order
terms and/or higher resonances. We note that the scale
behavior of the ratio of the two isospin amplitudes is dom-
inated by the one of the ∆I = 3/2 channel, and therefore
it leads to a comparable uncertainty. Similarly, the B̂K pa-
rameter suffers from a sizable dependence on the matching
scale. Our calculation favors very low values of the scale
(. 700 MeV) leading to values for B̂K in the range of
0.4 < B̂K < 0.7. However, the large uncertainties associ-
ated with this result preclude a definite answer, and also
make the incorporation of higher order terms and higher
resonances very desirable.
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A Numerical values of the Wilson coefficients

In this appendix we list the numerical values of the LO and
NLO (HV and NDR) Wilson coefficients for the ∆S = 1
transitions used in Sect. 4.2. These values were supplied
to us by M. Jamin. Following the lines of [5] the coef-
ficients zi are given for a 10-dimensional operator basis
{Q1, . . . , Q10}. Below the charm threshold the set of op-
erators reduces to seven linearly independent operators
[see (4)–(7)] with

Q4 = −Q1 + Q2 + Q3, Q9 =
3
2
Q1 − 1

2
Q3,

Q10 =
1
2
Q1 + Q2 − 1

2
Q3. (53)

At next-to-leading logarithmic order in (renormalization
group improved) perturbation theory the relations in (53)
receive O(αs) and O(α) corrections [5,19]. In the present
analysis we use the linear dependence at the level of the
matrix elements 〈Qi〉I , i.e., at the level of the pseudoscalar
representation where modifications to the relations in (53)
are absent. We note that the effect of the different treat-
ment of the operator relations at next-to-leading logarith-
mic order, which is due to the fact that in the long-distance

Table 10. ∆S = 1 LO Wilson coefficients for ΛQCD =
245MeV

µ 0.6GeV 0.7GeV 0.8GeV 0.9GeV 1.0GeV

z1 −0.937 −0.826 −0.748 −0.690 −0.645
z2 1.576 1.491 1.433 1.391 1.359
z3 0.016 0.011 0.007 0.005 0.003
z4 −0.037 −0.027 −0.019 −0.014 −0.009
z5 0.011 0.008 0.006 0.004 0.003
z6 −0.045 −0.031 −0.021 −0.015 −0.010

z7/α 0.023 0.017 0.012 0.008 0.005
z8/α 0.007 0.004 0.002 0.001 0.0004
z9/α 0.027 0.019 0.013 0.009 0.006
z10/α −0.006 −0.003 −0.002 −0.001 −0.0004

Table 11. ∆S = 1 LO Wilson coefficients for ΛQCD =
325MeV

µ 0.6GeV 0.7GeV 0.8GeV 0.9GeV 1.0GeV

z1 −1.192 −1.010 −0.893 −0.811 −0.748
z2 1.779 1.632 1.541 1.479 1.433
z3 0.025 0.016 0.010 0.007 0.004
z4 −0.054 −0.036 −0.026 −0.018 −0.012
z5 0.015 0.011 0.008 0.006 0.004
z6 −0.070 −0.044 −0.029 −0.019 −0.013

z7/α 0.033 0.023 0.017 0.012 0.008
z8/α 0.012 0.006 0.003 0.001 0.001
z9/α 0.040 0.027 0.019 0.013 0.008
z10/α −0.010 −0.005 −0.003 −0.001 −0.001

Table 12. ∆S = 1 LO Wilson coefficients for ΛQCD =
405MeV

µ 0.6GeV 0.7GeV 0.8GeV 0.9GeV 1.0GeV

z1 −1.576 −1.246 −1.065 −0.947 −0.861
z2 2.104 1.824 1.676 1.582 1.517
z3 0.041 0.023 0.014 0.009 0.006
z4 −0.082 −0.051 −0.034 −0.023 −0.015
z5 0.022 0.015 0.010 0.007 0.005
z6 −0.119 −0.066 −0.041 −0.026 −0.016

z7/α 0.044 0.031 0.022 0.015 0.010
z8/α 0.024 0.010 0.005 0.002 0.001
z9/α 0.056 0.037 0.025 0.017 0.011
z10/α −0.017 −0.008 −0.004 −0.002 −0.001
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Table 13. ∆S = 1 NLO Wilson coefficients (NDR) for
ΛQCD = Λ

(4)
MS

= 245MeV

µ 0.6GeV 0.7GeV 0.8GeV 0.9GeV 1.0GeV

z1 −0.668 −0.578 −0.516 −0.470 −0.435
z2 1.391 1.326 1.282 1.252 1.229
z3 0.038 0.023 0.016 0.012 0.009
z4 −0.088 −0.059 −0.043 −0.032 −0.025
z5 0.007 0.009 0.008 0.007 0.006
z6 −0.102 −0.064 −0.044 −0.032 −0.025

z7/α 0.018 0.012 0.008 0.006 0.005
z8/α 0.069 0.039 0.024 0.015 0.009
z9/α 0.045 0.029 0.020 0.014 0.010
z10/α −0.032 −0.021 −0.014 −0.009 −0.006

Table 14. ∆S = 1 NLO Wilson coefficients (HV) for ΛQCD =
Λ

(4)
MS

= 245MeV

µ 0.6GeV 0.7GeV 0.8GeV 0.9GeV 1.0GeV

z1 −0.898 −0.739 −0.644 −0.579 −0.531
z2 1.569 1.444 1.373 1.326 1.292
z3 0.033 0.019 0.012 0.007 0.005
z4 −0.060 −0.038 −0.025 −0.017 −0.011
z5 0.012 0.008 0.006 0.004 0.003
z6 −0.060 −0.036 −0.024 −0.016 −0.010

z7/α −0.005 −0.005 −0.004 −0.004 −0.003
z8/α 0.046 0.027 0.017 0.011 0.007
z9/α 0.023 0.012 0.006 0.003 0.001
z10/α −0.038 −0.024 −0.016 −0.010 −0.007

Table 15. ∆S = 1 NLO Wilson coefficients (NDR) for
ΛQCD = Λ

(4)
MS

= 325MeV

µ 0.6GeV 0.7GeV 0.8GeV 0.9GeV 1.0GeV

z1 −0.805 −0.712 −0.623 −0.558 −0.509
z2 1.495 1.424 1.359 1.312 1.278
z3 0.095 0.046 0.027 0.018 0.013
z4 −0.193 −0.104 −0.068 −0.048 −0.035
z5 −0.019 0.005 0.009 0.009 0.008
z6 −0.261 −0.121 −0.072 −0.049 −0.035

z7/α 0.039 0.025 0.018 0.014 0.011
z8/α 0.181 0.079 0.042 0.024 0.014
z9/α 0.086 0.054 0.036 0.025 0.018
z10/α −0.056 −0.034 −0.021 −0.013 −0.008

Table 16. ∆S = 1 NLO Wilson coefficients (HV) for ΛQCD =
Λ

(4)
MS

= 325MeV

µ 0.6GeV 0.7GeV 0.8GeV 0.9GeV 1.0GeV

z1 −1.381 −1.011 −0.827 −0.716 −0.640
z2 1.982 1.662 1.513 1.427 1.370
z3 0.090 0.040 0.022 0.013 0.007
z4 −0.129 −0.068 −0.041 −0.026 −0.016
z5 0.016 0.011 0.008 0.006 0.004
z6 −0.137 −0.066 −0.038 −0.024 −0.014

z7/α −0.008 −0.003 −0.002 −0.002 −0.002
z8/α 0.107 0.050 0.027 0.016 0.010
z9/α 0.052 0.027 0.015 0.009 0.005
z10/α −0.077 −0.042 −0.025 −0.016 −0.010

Table 17. ∆S = 1 NLO Wilson coefficients (NDR) for
ΛQCD = Λ

(4)
MS

= 405MeV

µ 0.6GeV 0.7GeV 0.8GeV 0.9GeV 1.0GeV

z1 −0.176 −0.795 −0.738 −0.657 −0.592
z2 0.911 1.485 1.444 1.384 1.336
z3 0.350 0.108 0.052 0.030 0.019
z4 −0.637 −0.218 −0.117 −0.074 −0.050
z5 −0.318 −0.027 0.004 0.009 0.009
z6 −1.172 −0.288 −0.132 −0.077 −0.050

z7/α 0.119 0.042 0.029 0.023 0.018
z8/α 0.699 0.185 0.081 0.042 0.023
z9/α 0.132 0.089 0.059 0.040 0.029
z10/α −0.077 −0.054 −0.033 −0.020 −0.012

Table 18. ∆S = 1 NLO Wilson coefficients (HV) for ΛQCD =
Λ

(4)
MS

= 405MeV

µ 0.6GeV 0.7GeV 0.8GeV 0.9GeV 1.0GeV

z1 −2.603 −1.494 −1.102 −0.901 −0.778
z2 3.138 2.084 1.739 1.573 1.475
z3 0.370 0.102 0.044 0.023 0.012
z4 −0.403 −0.140 −0.072 −0.042 −0.025
z5 0.035 0.014 0.010 0.007 0.005
z6 −0.463 −0.141 −0.067 −0.037 −0.021

z7/α −0.063 −0.009 −0.002 −0.001 −0.001
z8/α 0.342 0.105 0.048 0.026 0.014
z9/α 0.111 0.051 0.028 0.016 0.009
z10/α −0.179 −0.078 −0.042 −0.024 −0.014
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part there is no (perturbative) counting in αs, is numeri-
cally negligible.

The following parameters are used for the calculation
of the Wilson coefficients:

MW = 80.2 GeV, sin2 θW = 0.23, α = 1/129,

mt = 170 GeV, mb(mb) = 4.4 GeV,

mc(mc) = 1.3 GeV.
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